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Abstract
An emerging trend in cognitive neuroscience is to investi-
gate neural responses to complex natural scenes. While
more ecologically valid, the complexity of these stimuli
requires analysis techniques capable of studying not only
the neural responses to object categories that consti-
tute a given scene, but also their rich spatial and seman-
tic interactions. Here, we present a generative brain-to-
text decoder, CorText, that produces linguistic descrip-
tions of natural scenes based on visually-evoked fMRI re-
sponses. At no point does the decoder have access to
the visual stimulus, it operates solely on brain data. This
cross-modal transformer, consisting of a linear encoder
for neural data and a partly frozen pre-trained language
decoder, enables us to harness the powerful features of
language models to study neural representations. As a
proof of concept, we analyse the neural regions most
informative for generating specific words by visualising
the transformer’s attention patterns. This approach re-
produces known functional organisation: elevated atten-
tion in the ventral stream and, accordingly, attention in
cortical regions involved in category-specific processing.
This work thus marks an important first advance into end-
to-end generative language transformers for investigating
complex neural data.

Keywords: vision; transformer; NSD; scene perception; cross-
modal alignment; semantics; neural decoding

Introduction
Experimental work in cognitive neuroscience has been ex-
panding from simple object stimuli towards the study of nat-
ural scenes (Doerig et al., 2022; Peelen, Berlot, & de Lange,
2024; Bartnik & Groen, 2023; Epstein & Baker, 2019). These
stimulus materials are complex and move beyond single cate-
gories by showing groups of objects embedded in scene con-
text, as well as people interacting with them and with each
other. Classical decoding techniques fall short in capturing
this richness of information, due to their focus on single ob-
ject categories and the constraints that come with predefining
fixed classifier categories. For more holistic semantic decod-
ing of scene information from neural data, recent work has
explored the usage of sentence embedding vectors, derived
from image captions (Doerig et al., 2022; Güçlü & van Ger-
ven, 2015; Zhang, Han, Worth, & Liu, 2020). Here we ex-
pand this line of research to leverage the full generative ca-
pacity that large language models have to offer. We present
CorText, a cross-modal brain-to-text transformer that decodes
fMRI data, recorded while people viewed natural scenes, into
captions of the perceived image in natural language. This
work is based on the insight that pre-trained, largely frozen
language transformers are capable of cross-modal fine-tuning
(Lu, Grover, Abbeel, & Mordatch, 2022). Consequently, we
adapt the FlanT5 language transformer (Chung et al., 2022)
to take neural data as input by constructing a linear brain en-
coder and partially fine-tuning the decoder to map from brain

to text. CorText is trained on the Natural Scenes Dataset
(NSD), a large-scale 7T fMRI dataset of neural responses to
images depicting complex natural scenes (Allen et al., 2022),
as well as the corresponding image captions that are available
for the stimuli (Chen et al., 2015). To our knowledge, this work
is the first approach to adapt pre-trained language transform-
ers to yield a generative model that maps from the brain to
textual captions, without any access to the underlying stimu-
lus materials. We demonstrate the feasibility of this approach
by showing that the transformer’s attention on the neural em-
beddings aligns with known functional organisation of cortex.
Future work will further exploit the capabilities of current lan-
guage models for neuroscience, such as question-answering
and language-based hypothesis testing.

Results

CorText successfully captions fMRI data

To investigate neural decoding with a partly frozen language
decoder, we first parcellate the brain data using the HCP-
MMP1 atlas. The resulting regions are linearly embedded and
fed as tokens into the language decoder (Fig. 1A). The final
output of the transformer is then compared to a human cap-
tion of the corresponding scene, and gradient descent is used
to adjust the encoder weights, cross-attention, and layer nor-
malisation. After training, we find that CorText’s captions of
perceived visual content match ground-truth human captions
when trained on only a single participant’s data (Fig. 1B).
These results show that with little training data, pre-trained
language transformers can be adapted to produce sensible
captions of neural data without access to the image stimuli.

CorText exhibits word-specific attention that aligns
with the functional organisation of visual cortex

To utilise the trained transformer for insights into brain com-
putations, we investigate the model’s cross-attention patterns,
which weigh the input data to select the most relevant infor-
mation for the task at hand. For both language and vision
transformers, visualisation of the attention weights in input
data space has shown to be informative about the levels of
semantic processing in the model (Dosovitskiy et al., 2020;
Vig & Belinkov, 2019). For CorText, this means that we can in-
spect how the attention mechanism for the generation of each
word of a given caption weighs the encoded brain regions.
Because our encoder is linear, we can reverse the encoding
and retrieve the attention-weighted beta values. We find that
the attention for the generation of words of several categories
is matched to known functional organisation of cortex (Fig.
1C; data averaged over all subjects and seeds of final layer).
For words describing people (e.g., ‘man’, ‘woman’), attention
matches regions of interest (ROIs) involved in face perception
and processing of social interactions, e.g. FFA and EBA. Like-
wise, words depicting places (e.g., ‘street’, ‘kitchen’) increase
attention to relevant ROIs such as PPA (Allen et al., 2022).
Lastly, we find that for words that describe food (e.g., ‘pizza’,
‘donut’) the attention map matches the food ROIs as defined



Figure 1: A - The CorText architecture fMRI data is parcellated into 360 regions which are linearly encoded into 512-dim.
embeddings each. The partially frozen language decoder decodes the neural embeddings and produces a caption of the
perceived stimulus, without having access to the image. Each network is trained on one out of 8 NSD subjects, we train 5
seed instances of each. B - Evaluation Left: Generated captions match ground-truth human captions as measured by Bleu-1
and CLIPscore (text and image). Right: Example human and model captions for 3 stimuli. C - Attention on fMRI data The
cross-attention-weighted betas for specific generated word categories align with well-known ROIs, here visualized for the final
attention layer across all trained networks.

by (Pennock et al., 2023). These results indicate that CorText
can accurately target and exploit structured neural represen-
tations to produce natural language descriptions of the per-
ceived stimulus. Furthermore, the attention maps show that
transformer attention on neural data is informative and justi-
fies their use in novel neural decoding applications.

Methods
Datasets: The Natural Scenes Dataset (NSD) contains 7T
fMRI measurements of 8 participants who have each viewed
9000 unique images sourced from the MS COCO dataset (Lin
et al., 2014). In addition, all participants have seen (up to)
1000 shared images, of which we use 515 as test set. We use
the beta values of the 1.8-mm volume preparation in fsaverage
space. Each image in NSD has five human captions from MS
COCO, which are used for supervised training.
Model architecture: CorText is an encoder-decoder trans-
former, inspired by the insight that with finetuning, frozen pre-
trained language transformers are capable of generalizing to
other modalities (Lu et al., 2022). As a basis for our explo-
ration, we rely on a pre-trained language transformer (FlanT5-
Small) with strong capabilities in various text-based tasks
(Chung et al., 2022). We freeze the pre-trained language
decoder and replace the FlanT5 encoder with 360 linear en-
coders, one for each brain region (180 per hemisphere) as
defined by the HCP-MMP1 atlas (Glasser et al., 2016). These
ROIs are processed similarly to language tokens, in analogy
to the approach taken by vision transformers (Dosovitskiy et
al., 2020). We replace softmax in cross-attention layers by the

following: Attnorm =
atti−min( a⃗tt)

max(a⃗tt)−min(a⃗tt) . Note that the encoder
used in CorText is linear. While limited in computational ex-
pressivity, this approach enables us to subsequently analyse
cross-attention maps in the original voxel space.
Training: Each encoder learns a linear mapping between a

parcel of NSD beta values and a 512-dimensional embedding
for the decoder. Only the encoders, the cross-attention heads
and layer normalisation throughout the decoder are trainable,
resulting in a relatively low number of trainable parameters
for the sampled dataset (37M). The model minimizes cross-
entropy between generated and randomly selected human
captions for each trial. Models are trained with Adagrad for 70
epochs, with a learning rate of 1e-3, and L2 encoder weight
regularisation of 5e-1. For each model, we train 5 seeds to ac-
count for inter-model variation. Importantly, we used FlanT5
as, to our knowledge, it was not trained on COCO captions,
unlike most language and multimodal models (e.g., CLIP).
This avoids memorization of captions, forcing our model to
learn beyond simple look-up.
Metrics: To evaluate the quality of the captions generated
from neural data, we use several metrics. BLEU evaluates
the n-gram match between words in the predicted caption and
its ground truth. RefCLIPscore captures semantic correspon-
dences, dealing well with sentences that have different syn-
tax but similar meanings. Furthermore, we use CLIPScore
(Hessel, Holtzman, Forbes, Bras, & Choi, 2021) to evaluate
the correspondence with the seen image. The ceiling for each
metric is set by the average correspondence of all MS COCO
human captions.
Attention maps: To investigate the cross-attention, we re-
trieve the average attention of the attention heads in each
layer on the test dataset. Because cross-attention maps from
each brain ‘token’ to each generated word, we can retrieve
the attention for specific categories of words. We do so for
people, places and food. To retrieve the voxel-level attention
maps, we weigh the brain embeddings for the stimulus condi-
tion for which a word of interest was generated with the cross-
attention on that word. Following this, we invert the linear em-
bedding to retrieve an attention-weighted voxel brain map.
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